(Bi,Sr) (Fe1−x,Mx)O3−δ (M = Co, Ni and Mn) Cathode Materials with Mixed Electro-Ionic Conductivity

نویسندگان

  • Wen-Cheng J. Wei
  • Der-Rong Huang
  • Dan Wang
چکیده

(Bi,Sr)FeO3-δ (BSF) cathode materials doped with either Co, Ni or Mn are synthesized by an ethylene diamine tetra-acetic acid (EDTA)-citrate complexing method, and the effects of the doping level on the mixed electronic-ionic conductivity at various temperatures are studied up to 800 °C. The phase purity and solid solution limit are investigated by X-ray diffraction (XRD). The ionic conductivity is measured by the four-probe direct current (DC) method, the valence state of Fe and Mn by X-ray photoelectron spectroscopy (XPS), and the oxygen non-stoichiometry by differential thermo-gravimetric analysis (TGA). The doped ferrites show interesting electronic conductivity dependent on the testing temperature, implying two conductive mechanisms, either controlled by double exchange at lower temperatures or small polaron (electron-oxygen vacancy) conduction at temperatures greater than 400 °C. The results of Co-doped BSF (S50C20) show the best mixed conductivity among the ferrites, and this is used to assemble cells. The cell with a S50C20 cathode in the region of 600-800 °C is improved by 15% in maximum power density greater than the cell with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) due to the balanced contribution from oxygen ions, vacancies and electrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Electrical Properties, Band Gaps and Rate Capability of Li2MSiO4 (M= Mn, Fe, Co, Ni) Cathode Materials Using DOS Diagrams

In this study, theoretical investigations of Li2MSiO4 family cathode materials, including Li2MnSiO4, Li2FeSiO4, Li2CoSiO4, and Li2NiSiO4 are performed using density functional theory (DFT), by GGA and GGA+U methods. The materials properties including electrical conductivity and rate cap...

متن کامل

Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor.

A-site ordered PrBaMn2O(5+δ) was investigated as a potential cathode for CO2 electrolysis using a La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O(5+δ), was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrica...

متن کامل

New Type of Alkaline Rechargeable Battery—Ni-Ni Battery

The feasibility of utilizing disordered Ni-based metal hydroxide, as both the anode and the cathode materials, in alkaline rechargeable batteries was validated for the first time. Co and Mn were introduced into the hexagonal Ni(OH)2 crystal structure to create disorder and defects that resulted in a conductivity increase. The highest discharge capacity of 55.6 mAh ̈g ́1 was obtained using a comme...

متن کامل

Oxidation of greenhouse gases, CH4 and CO, over LaMnxNi1-xO3±δ mixed oxide

The performance of LaMnxNi1-xO3±δ perovskite mixed oxides (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) which were prepared by different methods, the Pechini and sol-gel methods in the oxidation of greenhouse gases, CH4 and CO, has been investigated. All samples were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electr...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016